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Reduced number of steps for the synthesis of dense
and highly functionalized dendrimers
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Abstract—A series of densely functionalized dendrimers is synthesized using two branched monomers of type AB2 and CD2, in
which the A function (NH2) reacts with D (CHO) and the B function (Cl) reacts with C (OH). The reaction has been carried
out up to the fourth generation possessing 96 end groups and has been obtained in only four steps.
� 2006 Elsevier Ltd. All rights reserved.
The hyperbranched, perfectly defined structure of den-
drimers,1 and the easy functionalization of their end
groups have induced a dramatic expansion of their
potential application in various fields of nanosciences
including materials2 and biology.3 However, the
achievement of dendrimers with numerous end groups
after only a small number of synthetic steps is not trivial.
A few methods have been already proposed to diminish
the number of steps, in particular the ‘double stage
method’4 and the ‘double exponential growth’,5 but
these methods does not really decrease the number of
steps when considering the whole synthetic process used.
In fact, the most powerful strategy to date is the ‘ortho-
gonal coupling strategy’,6 which consists in using two
types of branched units (ABn and CDn 0 monomers,
where n and n 0 are generally equal to 2). This method
gives at each step a new generation of layered dendri-
mers, but it has been mainly used with a set of com-
pletely independent classes of protecting groups. To
avoid the inconvenience of using protection/deprotec-
tion strategies, we have previously proposed for the first
time ABn and CDn 0 monomers (n, n 0 = 2 and/or 5) bear-
ing two pairs of complementary functions able to react
quantitatively and spontaneously without any activating
agent.7 In all cases, the A and D functions were phos-
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phines and azides reacting by Staudinger reactions and
creating P@N linkages, whereas the B and C functions
were hydrazines and aldehydes reacting by condensation
reactions and creating CH@NN linkages. These meth-
ods are particularly powerful, but imply the use of easily
oxidable phosphines, which must be manipulated under
a controlled atmosphere excluding oxygen. On the other
hand, our main method of synthesis consists in the
repetition of condensation reactions and nucleophilic
substitutions;8 it does not necessitate any drastic condi-
tions, and allowed us to synthesize and characterize the
highest generation9 ever described for any type of den-
drimer, but is relatively tedious since the number of
end groups is multiplied twice only after two synthetic
steps. We report in this paper a substantial improvement
of this method, which allows multiplying by two the
number of end groups at each step.

The method of synthesis we generally use requires a
branched building block of type AB2 (H2NNMeP(S)Cl2,
with A = NH2 and B = Cl) and a linear one of type CD
(4-hydroxybenzaldehyde, with C = OH and D = CHO).
In order to densify more rapidly the number of end
groups, this linear building-block should be replaced
by a branched one, but having the same type of func-
tions. This is the reason as to why we have considered
5-hydroxyisophthaldehyde 1, prepared from 5-hydroxy-
diethylisophthalate10 in this study. The first step to
build the dendrimer consists in grafting 6 equiv of the
sodium salt of 1 to N3P3Cl6 (Scheme 1). The reaction
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is carried out in DMSO, due to the relatively poor solu-
bility of the intermediate and resulting compounds.

The reaction is relatively slow and needs 2 days to com-
plete, as shown by 31P NMR monitoring. Indeed, all
partly substituted derivatives give a complex mixture
of signals, whereas the expected product 2-G1 gives a
singlet. This compound is the first generation, since it
possesses twice the number of end groups compared to
the N3P3 core. This dendrimer is also characterized by
1H and 13C NMR, as well as by mass spectrometry
(FAB).11 Figure 1 shows the numbering scheme used
for the assignment of the NMR signals of all dendrimers
(see references).

The next step is the condensation of 2-G1 with 12 equiv
of the phosphorhydrazide 3. The completion of the reac-
tion is monitored by 1H NMR and IR, which display the
total disappearance of the signals due to the aldehyde
groups. This second generation (dendrimer 2-G2) pos-
sesses 24 Cl and is obtained in two steps from the hexa-
functional core (Scheme 2). Dendrimer 2-G2 is also
characterized by mass spectrometry (Ionspray).

This second generation dendrimer is more soluble than
the previous generation, thus the grafting of the dialde-
hyde 1 used in the next step is carried out in THF. How-
ever the reaction is relatively slow and needs 5 days to
complete, as shown by 31P NMR monitoring. Indeed,
the singlet at d = 65.16 ppm disappears on behalf of
the intermediate appearance of a singlet at 71.2 ppm,
corresponding to the monosubstitution on the P(S)Cl2
end groups of 2-G2. The completion of the reaction is
shown by the disappearance of this signal, which trans-
forms in the 2-G3 singlet at 66.38 ppm. The third gener-
ation 2-G3 possesses 48 aldehyde end groups. Besides
multinuclear NMR, it is also characterized by MS
(Maldi-Tof) (Scheme 3).
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Figure 1. Numbering used for NMR assignment.
The fourth generation is obtained by condensation of
48 equiv of the phosphorhydrazide 3 on the aldehyde
end groups of dendrimers 2-G3 (Scheme 4).The reaction
completes after one night at room temperature, as
shown by 1H NMR (disappearance of the signal corre-
sponding to aldehydes). An important broadening of
the signals is observed in the 1H NMR spectrum; such
phenomenon denotes a ‘frozen’ structure, as we have
already observed.12 Dendrimer 2-G4 is characterized
by multinucleus NMR.11 The molecular peak of this
compound could not be observed by Maldi-Tof, due
to the sensitivity of the hydrazone linkage toward the
laser light used by this technique.13

In an attempt to obtain the fifth generation, 96 equiv of
the sodium salt 1 were added to the fourth generation 2-
G4. However, this reaction never went to completion
even after prolonged heating, as shown by 31P NMR
monitoring, which is really a valued tool to ascertain
the completion of reactions (with a precision better than
1%). Figure 2 displays the structure of compound 4,
which is the dendrimer obtained after the same number
of steps than 2-G4, but using this ‘classical’ method; it
allows to visualize by comparison the dramatic differ-
ence of steric hindrance between 2-G4 and 4.

Thus, it seems that steric hindrance precludes a total sub-
stitution on the end groups. The phenomenon of ‘dense
packing’ (due to a too high number of end groups to
2 C3
2

C3
1

C3
2 C3

3

C3
4

C3
3

O

HC N N

Me

P4

S
Cl

Cl



N

P
N

P

N
P

O

O

C
H

HC N N
Me

P
S

N N
Me

P
S

HC

CH
N

NMe
P

S
N

N
Me

P
S

OO

CH

HC
N

N
Me

P
S N

N
Me

P
S

C
H

HC
N

N
Me

P
S

N
N

Me P
S

O

O

C
H

CHNN
Me

P
S

NN
Me

P
S

CH

HC
N

N Me
P

S
N

N
Me

P
S

O

CHO

CHO

O

CHO
OHCO

CHO

CHO
O

OHC

OHC

O
O

CHO

CHO

OHC

OHC

O

CHOOHC

O
CHO

CHO

O

CHO

CHO

CHO

OHC

O
CHO

CHO

O

OHC

OHC

OO

OHC

OHC

O

CHO

CHO

O
OHC

OHC

O

OHC
CHO

OOHC

CHO

O
OHC

CHO

O

OHC CHO

O

OHC

OHC

O

OHC
CHO

O

OHC

OHC

O

CHO

CHO

O

OHC

OHC

2-G3

2-G2 + 24 1

Scheme 3. Synthesis of generation 3.

N

P
N

P

N
P

O
O

HC

HC N N
Me

P

S

N
Me

P
S

HC

CH
N

NMe P
SN

N Me

P
S

OO

CH

HC
N

N MeP
S

N
N

Me

P
S

C
H

HC
N

N
Me

P
S

N
NMe P
S

O
O

C
H

CHNN
Me

P

S

NN
MeS

CH

HC
N

N Me
P S N

NMe

P
S

O
CHO

C
H

HC

N
N
Me

P
S

Cl
Cl

N N
Me P

S
Cl

Cl
N N

Me

P
S

Cl
Cl

C
H

N N
Me

P
S

Cl
Cl

O
C
H

O
C
H

HC

N N
Me

P
S Cl

Cl

N N
Me

P
S

Cl
Cl

N N
Me

P
S Cl

Cl

HC N
N
Me

P
S

Cl
Cl

O

HC

O

HC

H
C

N
N

Me P
S Cl

Cl

N
N
Me

P
S

Cl
Cl

N
N

Me P
S Cl

Cl

HC
N

N
Me

P
S

Cl
Cl

O

HC

O

HC

H
C

N
NMe

PS
Cl Cl

N
NMe

P S

Cl
Cl

N
NMe

PS
Cl

Cl

HC
N
N Me

P S
Cl Cl

O

HC

O

HC

CH

N

NMe

PS
Cl Cl

N
N Me

P S
Cl Cl

N
NMe
PS

Cl Cl

HC
N
N Me

P S
Cl Cl

O

HC

O

HC CHN
NMe

PS
Cl

Cl

N
NMe

P
SCl

Cl

N
N

Me

P
S

Cl
Cl

H
C

N
N

MeP
SCl

Cl

PO
HC O

H
C

CH

N
N
Me

P
S

Cl
Cl

N
N
MeP

S
Cl
Cl

N
N

Me

P
S

Cl
Cl

H
CNN

Me
P
S

Cl
Cl

O

H
C

O
H
C

CH

NN
Me

P
SCl

Cl
NN

Me
P
S

Cl
Cl

NN
Me

P
SCl

Cl

CHNN
Me

P
S

Cl
Cl

O

CH

O

CH

C
H

N
N

MeP
SCl

Cl

N
N

Me
P

S

Cl
Cl

NN
MeP

SCl
Cl

CH
N

N
Me

PS

ClCl

O

CH

O

CH

C
H

N
N Me

P S
ClCl

N
NMe

PS

ClCl

N
N Me

P S
ClCl

CH
N

NMe

PS
ClCl

O

CH

O

CH

HC

N

N Me

P S
ClCl

N
NMe

PS
ClCl

N
N Me

P S

ClCl

CH
N

NMe
P

S Cl
Cl

O

CH

O

CHHC N
N

Me

P
S
Cl

Cl

N
N

Me P
S Cl

Cl

N
N

Me

P
S

Cl
Cl

C
H

N N
Me

P
S

Cl
Cl

2-G4

2-G3 + 48 3

N

Scheme 4. Synthesis of generation 4.

P. Servin et al. / Tetrahedron Letters 48 (2007) 579–583 581



N

P
N

P

N
P

OO

HC
N

N Me
P S

O

CH

O

HC

N
N Me

P S
ClCl

N
N

Me

P
S

Cl
Cl

CH
N

NMe P
S O

HC

O

CH

N
NMe

PS
ClCl

N
N

Me

P
S

Cl
Cl

O
O

H
C N

Me

P

S
O C

H

O

HC

N N
Me

P
S

Cl
Cl

N N
Me P

S
Cl

Cl

HC
N
N Me

P S
O

CH

O

HC N
N

Me

P S
Cl

Cl

N
NMe
PS
ClCl

O
O

CH
N

NMe

PS
O

HC

O

CHN
N

Me

PS
Cl

Cl

N
NMe
P S

Cl Cl

H
CNN

Me
P

S
OC

H

O

CH

NN
Me

P
SCl

Cl

NN
MeP

S
Cl
Cl

4

N

Figure 2. Dendrimer classically obtained after 4 steps (to be compared with 2-G4, Scheme 4).
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be accommodated by a too small surface) has been ear-
lier predicted by de Gennes.14 We already experienced
such phenomenon for the twelfth generation of our
‘classical’ dendrimers (AB2 + CD method) built from
a trifunctional core,9 but it was unexpected for a rela-
tively small compound such as 2-G4. Thus, in addition
to the crowding induced by the relatively high number
of end groups, it is receivable that the geometry of com-
pound 1 is a further important factor in precluding the
total substitution of the end groups. In keeping with
this hypothesis, the angle between the OH and CHO
groups is 120� instead of 180� for 4-hydroxybenzalde-
hyde. Such bending should induce rapidly an important
entanglement of the branches, which disfavors the
accessibility to some end groups, and precludes a full
substitution.

In conclusion, we have proposed a new method of syn-
thesis of dendrimers, based on the alternate use of two
branched monomers of type AB2 and CD2. A dense den-
drimer possessing 96 end groups (generation 4) has been
obtained in only 4 steps, by very classical and quantitative
condensation and substitution reactions. Surprisingly,
this compound is the highest generation obtainable in this
series due to steric hindrance induced both by the high
number of end groups and the geometrical entanglement
of branches. Thus, this series of compounds might offer a
readily available platform for studying the phenomena
occurring at a crowded interface, which might be of inter-
est in particular for explaining the catalytic behaviour of
metal-decorated dendrimers.
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